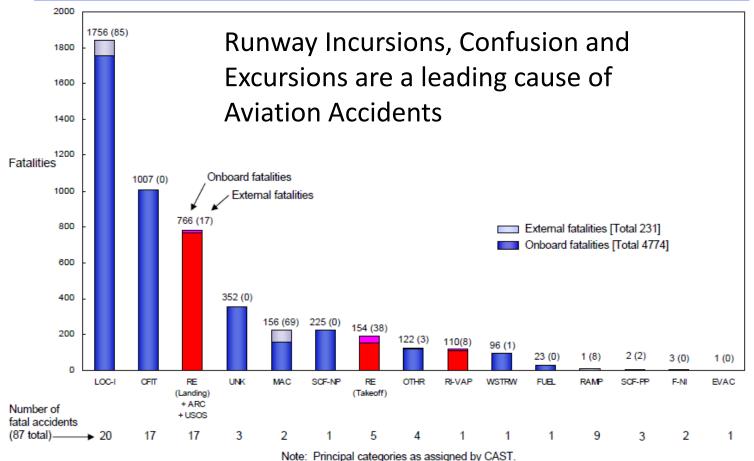
Available Technologies

Asia / Pacific Regional Runway Safety Seminar Session 4



Fatalities by CAST/ICAO Common Taxonomy Team (CICTT) **Aviation Occurrence Categories**

Fatal Accidents - Worldwide Commercial Jet Fleet - 2001 Through 2010

Note: Principal categories as assigned by CAST.

Runway Incursion & Confusion

Runway Incursion & Confusion

Eliminating Runway Incursion and Confusion requires Flight Crew Awareness of:

- Position of Own Ship on the Airport Surface
- Position of Other Traffic on the Airport Surface
- Taxi Route
- Conflicting Traffic

Situational Awareness

Airport Moving Map
On ND

Airport Moving Map
On Class 2/3 EFB

Smart Runway

Alerting

Runway Proximity Alerts
On ND/PFD

Runway Disagree Alerts
On ND/PFD

Position Awareness (incursion/confusion)

ICAO Regional Runway Safety Seminar

Positional Awareness via Airport Moving Map (Airbus OANS in-service example)

Runway Proximity

Positional Awareness via TAWS (Honeywell Smart Runway in-service example)

Positional Awareness via FMS (Boeing Runway Disagree Alerting in-service example)

Future Equipment Studies

Situational Awareness

Surface CDTI

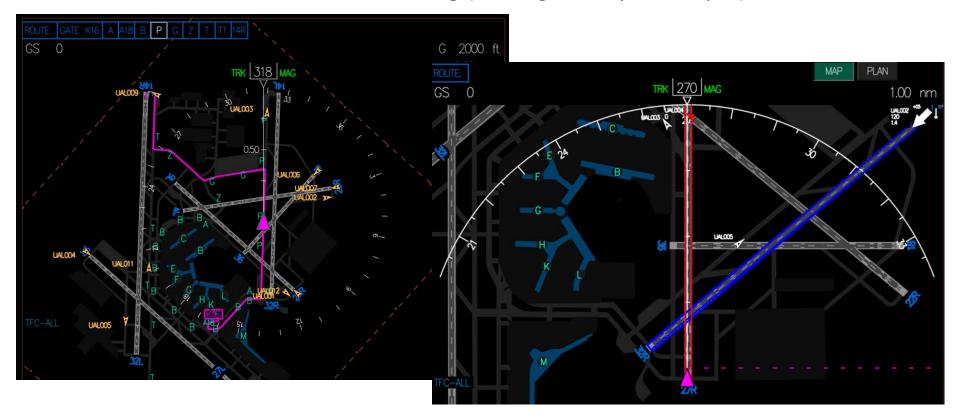
Taxi Route Display
On Airport Moving Map

Runway Status
Indications On Airport
Moving Map

Alerting

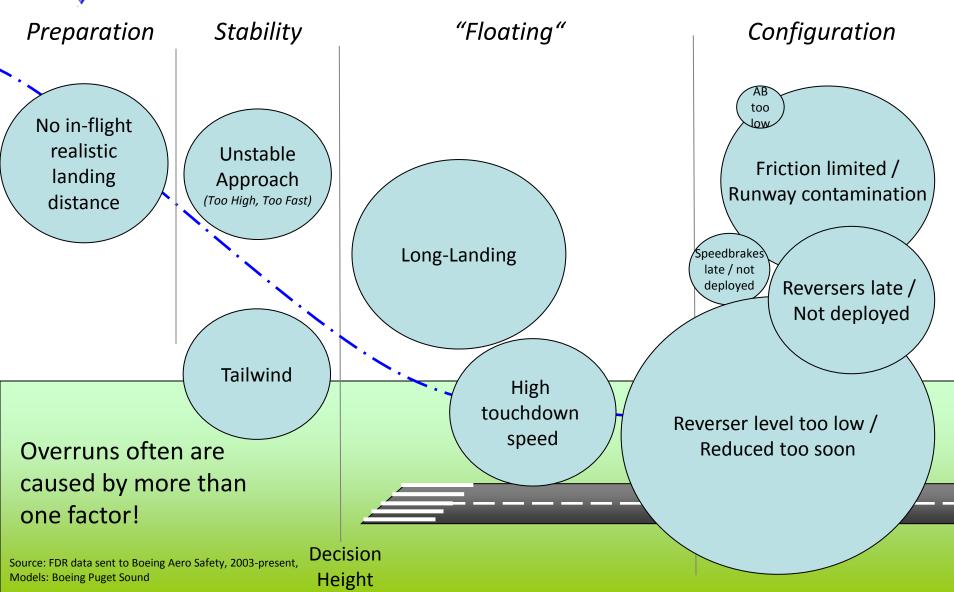
Surface Traffic Conflict
Alerts

Runway Incursion Alerts


Position, Taxi Route, & Traffic Awareness, Traffic Alerting

ICAO Regional Runway Safety Seminar

Future Equipment Studies


Airport Moving Map with Taxi Route, Traffic, Runway Status Indications and Traffic Conflict Alerting (Boeing concept example)

Runway Excursions

Overrun Characteristics

Overrun Risk Mitigations

Suggested	Operation	and Pi	rocedural	enhancement:
reparation	310	OIIILy		Houting

Runway conditions reporting

In-flight realistic landing distance calculation

Stabilized approach

Touchdown zone marking

"De-stigmatize" Go- Around

Use <u>all</u> deceleration devices

Maintain thrust reverser deployment

Suggested equipment enhancements:

Stability alerting

Real time dynamic performance prediction

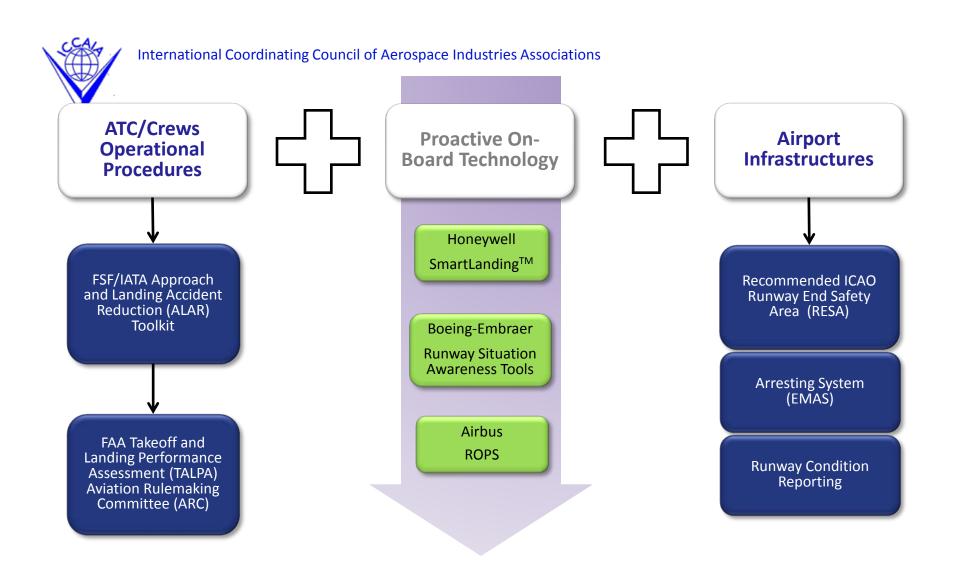
Aural and visual Go-Around decision aids

Head-Down and Head-Up visual cues

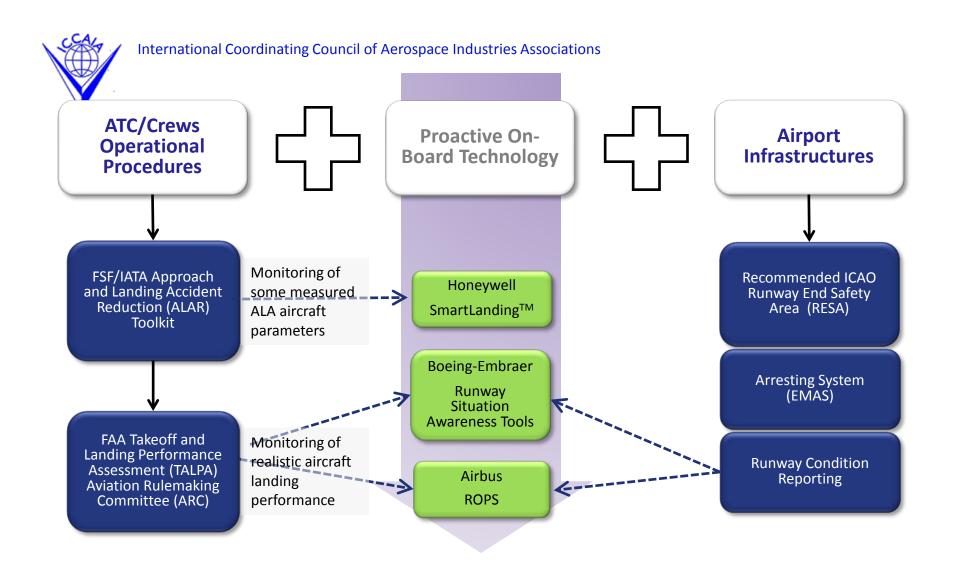
Real time dynamic performance prediction

Aural and visual Go-Around decision aids

Head-Down and Head-Up visual cues


Flare guidance

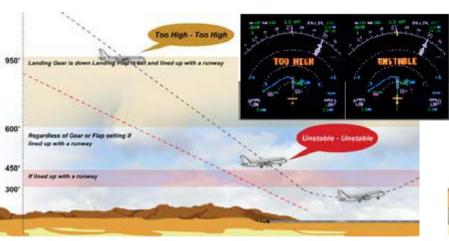
Real time dynamic stopping distance estimation


Aural and visual deceleration devices usage aids

Head-Down and Head-Up visual cues

Deceleration alerting

For Runway Excursion Risk, only a combined prevention approach will be effective



Guidance similar to TCAS & E-GPWS is needed to mitigate runway excursions

Available Equipment− Honeywell Smartlanding[™]

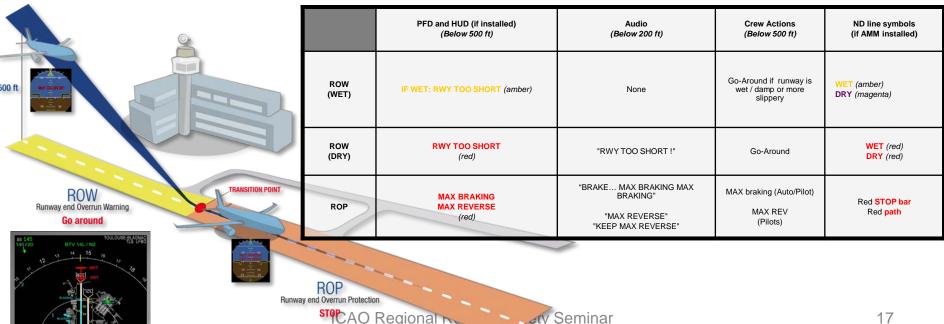
Smartlanding[™] is a software upgrade of the Honeywell E-GPWS:

- Monitoring A/C speed and position vs. runway threshold
- Providing visual/aural annunciations to enhance crew awareness of unstabilized approach
- Based on tuning defined by Honeywell (speed, glideslope) or set by airlines (long landing distance)

Smartlanding[™] main monitorings:

- « TOO FAST » alert,
- « TOO HIGH » alert,
- « UNSTABLE » alert,
- « LONG LANDING » alert.

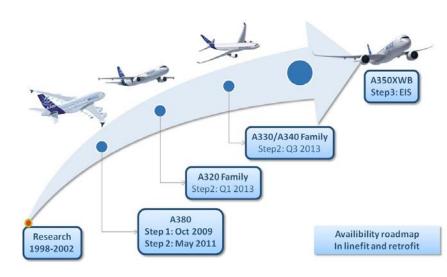
As considered as a "non interferent" function, FAA does not request:


- Demonstration of Smartlanding[™] tuning relevance
- Specific training
- Specific SOP in line with exisiting operators ones

TSO approval granted in 2009

Available Equipment— Airbus ROPS

ROPS is a low cost software upgrade of existing avionics computers:


- Continuous real time performance computation of predicted and remaining realistic operational landing distance
- Compare it/them in real time with runway end
- Trigger, only when necessary, clear alerts with simple SOP
- Guarantee and demonstrate both reliability and not excessive margins
- Ensure consistency with FAA TALPA rule and computation philosophy
- Avoid any additional tuning by airline
- In obvious complement of the necessary need to fly stable approach

Available Equipment, SOP and Training – Airbus ROPS and OLD

As ROPS is considered as an "interferent" function acting in a critical flight phase, EASA requests:

- Demonstration of the relevance of ROPS alerts and protections: no unprotected area, no undue conservatism
- Principle: "If no ROW alert before decision point Then, thanks to ROP and associated SOP, no runway excursion While no significant increase of go-around rate"
- Demonstration of man-machine interface design and operational suitability
- Adequate AFM, FCOM and FCTM

ROPS flight deck technology is supplemented by the on-going implementation in Airbus SOP of in-flight realistic landing distance assessment based on FAA TALPA Operational Landing Distance (OLD) recommendations:

- Available for all Airbus types between mid-2012 (from A320 to A380) and end 2013 (A300-A310)
- Updated training media
- Updated Engineering and Performance On-board Software
- AFM, QRH and FCOM Revisions
- Airbus Type Rating Training based on OLD
- Taking into account FSF ALAR and IATA RERR recommendations

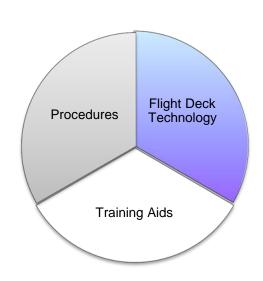
Future Equipment and Available SOP and Training - Boeing-Embraer Runway Situation Awareness Tools

For every landing:

- Calculate Landing Distance
- Calculate & brief a go-around point
- A thrust reverser callout has been added to the FCTM and the FCOM

Approach & Landing Training Aid video:

- •Flying a stable approach
- Runway contamination
- •Runway length available vs. required
- Reported conditions vs actual
- Approach speed additives
- Use of deceleration devices


- Enhanced approach planning tools
- Aural & visual runway positional awareness & alerting
- Stability guidance and alerting
- Predicted runway stop location display
- Overrun alerting

ICAO Regional Runway Safety Seminar

Future Equipage and available SOP and Training - Boeing-EmbraerRunway Situation Awareness Tools

Non-Equipment mitigations available:

- Updated Approach Procedures
- Boeing-Embraer Approach & Landing Training Aid
- Flight Safety Foundation ALAR tool kit
- IATA Runway Excursion Risk Reduction (RERR) toolkit

Equipment mitigations available:

- Heads up Display (HUD)
- Vertical Situation Display (VSD)
- Onboard Performance Tool (OPT)
- Runway Awareness Advisory System (RAAS)

Enhanced in-production and cost-effective retrofit packages starting in 2015

Conclusion

- Flight deck solutions already exist or are coming
- Significant fleet coverage is needed to achieve widespread safety benefit
- Bodies starts to recommend installation of such flight deck solutions
 - US: NTSB (A-11-28, March 29th 2011)
 - Europe: EASA-Eurocontrol EAPPRE (AC05 for aircraft operators AM03 for aircraft manufacturers)
- Harmonization of certification standard is requested
 - Current and future airplanes
 - High quality runway and airport data (Airport Mapping DB, Terrain DB, etc.)
 - TAWS development and deployment lessons learnt

THANK YOU

